
Dr
aft

Security Assessment &
Formal Verification
Report

Manifest
November 2024

Prepared for Manifest

Table of content
Project Summary...4

Project Scope.. 4
Project Overview... 4
Findings Summary.. 5
Severity Matrix...5

Detailed Findings.. 6
Featured Finding: Avoid complications of Effective Price by rounding in favor of large orders.......................8
High Severity Issues... 9
H-01 Withdraw transfers funds from user to vault instead of vault to user for Token-2022.............................9
H-02 hinted_cancel_index isn’t checked to match block size during batch update.......................................11
Medium Severity Issues..13
M-01 Swap function might swap for less amount out under low liquidity.. 13
M-02 expand_global() expands the account’s memory by the wrong size...15
M-03 Swap function might return less than amount out or revert due to unbacked global orders................ 16
Low Severity Issues.. 18
L-01 Refund for order cancellation is rounded down rather than up (PR #108)..18
L-02 Attacker can remove global order by partially fulfilling on another market..19
L-03 Attacker can front run an order with posting multiple small orders, gaining profit from rounding..........21
L-04 Attacker can front run global or post only order with a small order to cause it to revert....................... 22
L-05 Sell orders can leave rounding errors in the contract forever... 24
L-06 Use of floating point numbers f64 can cause unintended consequences... 25
L-07 Red Black tree marks wrong color during removal, leading to an unbalanced/inefficient tree..............26
Informational Issues... 28
I-01 During cancellation, order_sequence_number isn’t checked, possibly emitting wrong sequence
number.. 28
I-02 RestingOrder trees lookup function is broken for nodes with same price.. 29
I-03 unnecessary update of x as child of p in rotate left/right.. 30
I-04 - Orders of zero price can be added to tree... 32
I-05 - swap_nodes() doesn’t support swapping with node root as the second node.....................................33
I-06 - Canceling an order might run out of compute units when no index hint is provided............................34
I-07 - Dead code in get_next_higher_index().. 35
I-08 - Duplicate variable declaration in insert_fix().. 36
I-09 - if blocks can be refactored into if-else..37
I-10 - Check that in_atoms is backed up by actual funds..38
I-11 - Avoid complications of Effective Price by rounding in favor of large orders...39
I-12 - Check that cancel_order_by_index allows a trader to cancel only their own order............................. 41
I-13 - Remove recursion in Red-Black Tree implementation...42
I-14 - swap_nodes() doesn’t support swapping nodes that are parent and child.. 43

2

Formal Verification..44
Verification Notations...44
General Assumptions and Simplifications... 44
Formal Verification Properties... 45
Verifying “no loss of funds”...45
P-01. “no loss of funds” - deposit.. 46
P-02. “no loss of funds” - withdraw..46
P-03. “no loss of funds” - rest_remaining.. 47
P-04. “no loss of funds” - cancel_order_by_index...47
P-05. “no loss of funds” - cancel_order... 48
P-06. “no loss of funds” - place_order... 48
P-07. “no loss of funds” - swap..50
Formal Verification Properties... 51
Rules for the integrity of deposit, withdrawal, order cancelation and batch update............................51
P-01. Integrity of deposit... 51
P-02. Integrity of withdraw...52
P-03. No unexpected revert on cancel_order_by_index... 52
P-04. Integrity of batch_update... 53
Formal Verification Properties... 54
Rules for the matching mechanism... 54
P-01. Correctness of the matching mechanism.. 54
Formal Verification Properties... 57
Red-Black Tree.. 57
P-01. Correctness of rotation.. 57
P-02. insert_fix matches reference implementation.. 58
P-03. remove_fix matches reference implementation... 59
P-04. insert correctly updates max_index... 61
P-05. remove correctly updates max_index.. 62
P-06. Correctness of swap_nodes.. 63

Disclaimer.. 65
About Certora.. 65
Appendix - FV Plan for Red-Black Tree...66

General Approach... 66
Specific Approach... 67
Detailed Verification Properties... 67

3

Project Summary
Project Scope

Project Name Repository (link) Audited Commits Platform

Manifest
https://github.com/CKS-Syste
ms/manifest be0c627 Solana

fd905fd

PR #108: sort by
regular price only

Solana

In addition to PR #108, we also cherry-picked commit 714be51, which removes the tail recursion from the
insert_fix and remove_fix functions. This makes it easier to verify the correctness of those critical parts
of the code.

Project Overview

This document describes the specification and verification of Manifest smart contracts using the Certora
Prover and manual code review findings. The work was undertaken from 28 August 2024 to 21 November
2024.

The following contract list is included in our scope:

/programs/manifest/src/*
/lib/src/red_black_tree.rs

The Certora Prover demonstrated that the implementation of the Solana contracts above is correct with
respect to the formal rules written by the Certora team. In addition, the team performed a manual audit of all
the Solana contracts. During the verification process and the manual audit, the Certora team discovered bugs
in the Solana contracts code, as listed on the following page.

4

https://github.com/CKS-Systems/manifest
https://github.com/CKS-Systems/manifest
https://github.com/CKS-Systems/manifest/commit/be0c627fd149e6dc696db3f2679b89b86a21c868
https://github.com/CKS-Systems/manifest/pull/108/commits/fd905fdacecc9a1a66611ed83a94fa35697c4553
https://github.com/CKS-Systems/manifest/commit/714be51160ab7849affcac7c555327cf53acb926

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical - - -

High 2 2 2

Medium 3 2 2

Low 7 4 4

Informational 14 10 10

Total 26 18 18

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

Low Medium High

Likelihood

5

Detailed Findings

ID Title Severity Status

H-01 Withdraw transfers funds from
user to vault instead of vault to
user for token 2022

High Fixed in PR #173

H-02 hinted_cancel_index isn’t
checked to match block size
during batch update

High Fixed in PR #226

M-01 Swap function might swap for
less amount out under low
liquidity

Medium Not confirmed

M-02 expand_global() expands the
account’s memory by the
wrong size

Medium Fixed in PR #66

M-03 Swap function might return less
than amount out or revert due
to unbacked global orders

Medium Fixed in PR #119

L-01 L-01 Refund for order
cancellation is rounded down
rather than up (PR #108)

Low Fixed in PR #140

L-02 Attacker can remove global
order by partially fulfilling on
another market

Low Not Confirmed

L-03 Attacker can front run an order
with posting multiple small
orders, gaining profit from

Low Not Confirmed

6

https://github.com/CKS-Systems/manifest/pull/173
https://github.com/CKS-Systems/manifest/pull/226
https://github.com/CKS-Systems/manifest/pull/66
https://github.com/CKS-Systems/manifest/pull/119
https://github.com/CKS-Systems/manifest/pull/140

rounding

L-04 Attacker can front run global or
post only order with a small
order to cause it to revert

Low Not Confirmed

L-05 Sell orders can leave rounding
errors in the contract forever

Low Fixed in PR #39

L-06 Use of floating point numbers
f64 can cause unintended
consequences

Low Fixed

L-07 Red Black tree marks wrong
color during removal, leading to
an unbalanced/inefficient tree

Low Fixed in PR #193

7

https://github.com/CKS-Systems/manifest/pull/39
https://github.com/CKS-Systems/manifest/pull/193

Featured Finding: Avoid complications of Effective Price by
rounding in favor of large orders

Following is a feedback we got from Manifest’s team as a response to our initial report:

“We feel that the recommendation to change our rounding from effective price to taker rounding
was not prominently featured. We feel that was the biggest contribution of the audit.

We expected that finding/recommendation to be much more highlighted since it radically
simplified the logic and we suspect it simplifies requirements of formal verification too.”

Thank you for the kind words. Following your comments, we decided to add a new issue (I-11 - Avoid
complications of Effective Price by rounding in favor of large orders) where we provide more details
about that recommendation and mention it here at the beginning of our report.

8

Unset

High Severity Issues

H-01 Withdraw transfers funds from user to vault instead of vault to user for
Token-2022

Severity: High Impact: High Likelihood: High

Files:
programs/manifest/src
/program/processor/w
ithdraw.rs

Status: Fixed Violated Properties: No loss of
funds and Integrity of withdraw
rule_withdraw_base
rule_withdraw_quote
rule_withdraw_withdraws

Description: The withdraw instruction allows the user to withdraw their funds from the vault to
their wallet.
However, for spl token 2022, the function transfers the funds from the user to the vault rather
than the vault to the user. Thus, instead of receiving funds, the user would be charged the same
amount.

&spl_token_2022::instruction::transfer_checked(
token_program.key,
trader_token.key,
if is_base {

dynamic_account.fixed.get_base_mint()
} else {

dynamic_account.get_quote_mint()
},
vault.key,
payer.key,
&[],
amount_atoms,
if is_base {

dynamic_account.fixed.get_base_mint_decimals()

9

} else {
dynamic_account.fixed.get_quote_mint_decimals()

},
)?,

Exploit Scenario:

● Bob deposits 10K USDC to the protocol
● Bob trades it for 300K FLUXB
● Bob attempts to withdraw the funds, but instead of withdrawing the protocol transfers

an additional 300K FLUXB from them to the protocol
● Bob has lost 600K FLUXB in total, with no way to rescue the funds

Recommendations: Correct the transfer to transfer the funds from the vault to the user

Customer’s response: Fixed in PR #173

Fix Review: Fix confirmed

10

https://github.com/CKS-Systems/manifest/pull/173

C/C++

H-02 hinted_cancel_index isn’t checked to match block size during batch update

Severity: High Impact: High Likelihood: Medium

Files:
programs/manifest/src
/program/processor/b
atch_update.rs

Status: Fixed

Description: As part of batch update, the user can pass a list of orders to cancel.
The user can refer to the order by passing the location of the index in memory as the

hinted_cancel_index parameter, the function then intends to verify that the index matches
the alignment of the account’s memory (by checking that it’s a multiple of

MARKET_BLOCK_SIZE).
However, the function checks the wrong parameter - it checks trader_index rather than

hinted_cancel_index.
A user might be passing the wrong index, causing unintended consequences to the account's
memory and paying the user for canceling an order he never posted.

require!(
trader_index % (MARKET_BLOCK_SIZE as DataIndex) == 0,
ManifestError::WrongIndexHintParams,
"Invalid cancel hint index {}",
hinted_cancel_index,

)?;

Recommendations: Change trader_index to hinted_cancel_index

11

Customer’s response: Fixed in PR #226.
We would like the report to show an adversarial constructed example though. That would
illustrate it better, an example that goes through and shows how canceling with a wrong hint can
lead to an attacker trader index receiving funds.

Fix Review: Fix confirmed

12

https://github.com/CKS-Systems/manifest/pull/226

Medium Severity Issues

M-01 Swap function might swap for less amount out under low liquidity

Severity: Medium Impact: High Likelihood: Low

Files:
programs/manifest/src
/program/processor/s
wap.rs

Status: Not Confirmed

Description: The swap instruction calls place_order() and passes base_atoms as the
amount of base atoms that should be traded.
However, it doesn’t check that the full amount has been traded. In case there’s not enough
liquidity in the current orders the function would return after a partial fulfillment.

In case of swapping base for quote where is_exact_in=false the user might end up with less
amount out for the full amount in

Exploit Scenario:

● Eve creates a bid order with the price of 1 and 1000 quote atoms
● Eve creates another order with the price of 0.1 and 100 quote atoms
● Bob tried to swap a 1000 base for a 1000 quote

○ Bob sets is_exact_in=false
● Eve front runs this and removes the order with the price of 1
● Bob’s tx is executed, the swap instruction swaps 1000 for 100

○ impact_base_atoms() would set the base_atoms to 10,000, but the

place_order() would trade only 1000
● Bob lost 900 base atoms

Recommendations: Check the base_atoms_traded return value of the place_order()
function to verify that the full amount has been traded.

13

Customer’s response: Working as intended. We added a comment to the code affirming that
this is intended behavior at PR #121

Fix Review: The new comments clarify the design, raise awareness of the risk, and encourage
the caller program to do additional checks to avoid the described issue.

14

https://github.com/CKS-Systems/manifest/pull/121

M-02 expand_global() expands the account’s memory by the wrong size

Severity: Medium Impact: Low Likelihood: High

Files:
programs/manifest/src
/program/processor/s
hared.rs

Status: Fixed

Description: Before a new trader is added to the global account expand_global() is called to
expand the memory of the account and make room for the new trader.

However, the function calls expand_global_fixed() which expands it by 80 bytes (the
market’s block size) rather than 64 bytes (the global account block size).
This increases the cost for the caller, and makes it run out of space faster - reducing the amount
of traders that can fit in one account.

Recommendations: Expand by 64 bytes rather than 80

Customer’s response: Fixed in PR #66.
This is very low impact. The number of global seats is capped, so it is very limited in the amount
of impact (~1600 bytes extra allocated per global, once for the lifetime of the program).

Fix Review: Fix confirmed

15

https://github.com/CKS-Systems/manifest/pull/66

M-03 Swap function might return less than amount out or revert due to unbacked
global orders

Severity: Medium Impact: Medium Likelihood: Medium

Files:
programs/manifest/src
/program/processor/s
wap.rs

Status: Fixed

Description: The impact_base_atoms() function is supposed to estimate how many base
atoms are needed to be sold (or bought) to receive (or in exchange for) some amount of quote
atoms.
However, this function doesn’t check if global orders have enough funds to back them. This leads
to an underestimation (in case of ask) or overestimation (in case of bid) of the base atoms.

(the same bug exists on impact_quote_atoms(), but that isn’t used by any other function)

This has 2 different impacts:

● In the case of swapping base for quote - the user would receive less than the amount out
● In case of swapping quote for base - the swap might revert even when the user’s order

can be fulfilled

Exploit Scenario:

Swapping base for quote:

● Eve creates a global bid order with a price of 1 and a regular bid order with a price of 0.5
● Eve withdraws the funds from the global account, so the global order doesn’t have funds to back it
● Bob attempts to swap base for a quote

○ atoms in = 1000
○ atoms out = 1000
○ is exact in = false
○ is base in = true

16

● The impact function would match the global order, setting the base atoms to 1000
● The place_order() function would remove the global order since it has no funds to back it, it’d then

trade the 1000 base for 500 quote atoms
● The swap would complete with only 500 atoms out, half the amount that the user has specified

Swapping quote for base:

● Alice creates a regular ask order with the price of 1
● Eve creates a global ask order with the price of 0.5
● Eve withdraws the funds from the global account, so the global order doesn’t have funds to back it
● Bob attempts to swap the quote for a base

○ atoms in = 1000
○ atoms out = 1000
○ is exact in = true
○ is base in = false

● The impact function would match the global order, setting the base atoms to 2000
● The place_order() function would remove the global order since it has no funds to back it, it’d then

attempt to trade the1000 quote for 2000 base atoms
○ This would cause the function to revert, due to either insufficient balance for Bob or due an

underflow in the swap function
● This effectively DoS-es the swap function

Recommendations: Fix impact_*_atoms() functions to check if global orders have sufficient
funds to back them

Customer’s response: Fixed in PR #119.
Comments in code now clarify that the desired parameter to swap is only best effort.

Fix Review: Fix confirmed

17

https://github.com/CKS-Systems/manifest/pull/119

Low Severity Issues

L-01 Refund for order cancellation is rounded down rather than up (PR #108)

Severity: Low Impact: Low Likelihood: High

Files:
programs/manifest/src/sta
te/market.rs

Status: Fixed Violated Property:
rule_cancel_order_by_index_bid
rule_cancel_order_bid

Description: As part of the audit the team has reviewed PR #108 which removes the effective
price.
The team has found that during cancellation of an order the refund amount is rounded down
rather than up, this would cause a minor loss of funds (1 atom) for the trader.

Recommendations: Round up for the refund amount of a canceled order

Customer’s response: Fixed in PR #140.
This is related to removal of effective price which was the biggest contribution of the audit.

Fix Review: Fix confirmed

18

https://github.com/CKS-Systems/manifest/pull/108
https://github.com/CKS-Systems/manifest/pull/140

L-02 Attacker can remove global order by partially fulfilling on another market

Severity: Low Impact: Low Likelihood: Medium

Files:
programs/manifest/src/sta
te/market.rs

Status: Not Confirmed

Description: Global orders are removed from the market if the funds to back them are less
than the amount that the taker is trying to trade.
An attacker can use this to remove global orders that they consider as unwanted competition.

Exploit Scenario:

● Bob deposits 10K USDC to the USDC global account
● Bob places a 10K USDC order on the USDC/SOL market
● Bob also places 100 USDC order on the USDC/USDT market
● Eve wants to remove Bob’s order from the USDC/SOL market (since his order has a better

price, so takers match his order first)
● Eve fulfills 1 atom of Bob’s order on the USDC/USDT market
● Eve then tries to fully match Bob’s global order

○ Since Bob has 1 less atom than needed the order would be removed
○ Eve doesn’t have to spend anything on this, as long as the next order has a slightly

worse price the instruction would end at this point (Eve would specify Bob’s price
as the desired price)

Recommendations: Consider allowing partial fulfillment of global orders

Customer’s response: This is working as intended. We want people to overprovision global.
Likely not going to do the todo here . There is economic protection though since the attacker
needs to pay for it. In other words, the attacker needs to put on risk that they need to hold and
cannot necessarily get out of without significant cost. Another consideration is this increases
market competitiveness - the less funds backing your orders the less competitive they are and

19

https://github.com/CKS-Systems/manifest/blob/10954d43e97a1d43d83bb56874e3d23dd415a225/programs/manifest/src/state/utils.rs#L242

should be. The decision to do this is going to decide between the marginal benefit in edge cases
we don't really want (underprovisioned global balance where the maker is stretched too thin), vs
the likely consequences in user behavior for how often they attempt to grab the global lock.
Currently leaning towards not addressing this edge case because we want to limit usage of
global to where it is needed and not encourage extra competition for landing transactions.

20

L-03 Attacker can front run an order with posting multiple small orders, gaining
profit from rounding

Severity: Low Impact: High Likelihood: Very low

Files:
programs/manifest/src/sta
te/market.rs

Status: Not Confirmed

Description: Under current implementation trades always round up in favor of the maker.
An attacker can take advantage of that, and front-run a takers tx, creating multiple small orders
that would be fulfilled while rounding up in favor of the attacker. Causing a loss of up to 50% of
the trade.

Exploit Scenario:

● Market USDC/USDT is created with USDC as quote and USDT as base
● Bob attempts to buy 100 USDT atoms with the price of 1.0001
● Eve front runs Bob and creates 100 small orders with 1 atom each and a price of 1.0001
● Since every order is rounded up, Bob ends up paying 200 USDT, almost double the price

than he desired

Recommendations: It is possible to get rid of the complications that are caused by using
effective_price. Instead of rounding in favor of the maker, the code should round in favor of the
taker when he matches the full order and in favor of the maker when the order is only partially
matched. This way, every user (taker and maker) is protected against the other party
introducing micro-trades and would lose less than one atom on each of their trades. The
effective price is no longer needed and orders can be sorted by price instead. Partially fulfilled
orders can keep their place in the book. See I-11 for more information.

Customer’s response: This was not possible because of effective price. That was the whole
point of effective price.

Fix Review: Since PR #108 this issue does not exist anymore.

21

https://github.com/CKS-Systems/manifest/pull/108

L-04 Attacker can front run global or post only order with a small order to cause it to
revert

Severity: Low Impact: Low Likelihood: Medium

Files:
programs/manifest/src/sta
te/market.rs

Status: Not Confirmed

Description: When a user attempts to post a global or post-only order, another user can
front-run them and post a very small order that would match it.

Since global and post orders revert if there’s any match, the transaction would revert.

Note that this would work only if the global/post-only order is a better price than all other
orders on the market. Otherwise, the attacker would have to fulfill some orders before they can
post an order that would match the victim’s order.

The incentive for the attacker might be preventing competition, in case they already have an
order in the market and they want to prevent others from offering a better price than them.

Exploit Scenario:

● Eve has posted an ask order on the market with the price of 1
● Bob tries to post a global ask order with the price of 0.99
● Eve front runs it and creates a bid order of 1 atom with the price of 0.995
● Bob tx would match the bid order and revert

Recommendations: Consider making global orders not post-only. As for post-only orders -
maybe allow matching up to some dust amount (this can be a parameter that the user can pass).

22

Customer’s response: This is part of the spec. We don't want to allow global to be used for
taking since that would encourage much more lock contention on the global accounts. As for
the post only case, that's the reason for post only instead of limit. Will not make any changes
here. This is the same consideration from a transaction landing perspective as L-02.

23

L-05 Sell orders can leave rounding errors in the contract forever

Severity: Low Impact: Very Low Likelihood: High

Files:
programs/manifest/src/sta
te/market.rs

Status: Fixed

Description: When an order is posted, a balance is subtracted from the trader’s balance and
held in the order till a trade is made or the order is canceled/expired.

That balance is represented in the num_base_atoms field. For bid orders - since the order’s

balance is in terms of quote, then the balance is calculated by multiplying num_base_atoms by
the order’s price, rounded up (after the change in PR #108).

When a bid order is fulfilled partially, num_base_atoms is set to the amount that would
represent the new order’s balance.
However, this new value is rounded down, causing a minor (dust) loss of funds to the trader.

Exploit Scenario:

● Bob creates a bid order with the price of 0.1 and 75 base atoms
○ 8 quote tokens are removed from the Bob’s balance: ⌈75 * 0. 1⌉ = 8

● Alice fulfills the order with 26 base atoms
○ Quote traded are rounded down: ⌊26 * 0. 1⌋ = 2
○ num_base_atoms is set to (75 − 26) = 49

● The order is canceled by Bob
○ Bob receives quote tokens in return⌈49 * 0. 1⌉ = 5

● Bob was charged 8 quote tokens to create the order, 2 went to the trader and 5 were
returned to Bob. 8-2-5=1, 1 quote token was lost in the process.

Recommendations: In case of partial fulfillment, refund the order owner for that difference.

Customer’s response: Fixed in PR #39, All part of the effective price stuff.
Fix Review: Fix confirmed

24

https://github.com/CKS-Systems/manifest/pull/39

L-06 Use of floating point numbers f64 can cause unintended consequences

Severity: Low Impact: Low Likelihood: High

Files:
programs/manifest/src/qua
ntities.rs

Status: Fixed

Description: Early version of the code used floating point numbers (f64) for price computation.
There are several issues with floating point numbers. First, the SBF virtual machine does not
support floats. Thus, the behavior of the floats on SBF might be different than expected during
testing. Second, floats are not able to represent common decimal numbers. For example, in
floats, 0.2 + 0.1 is not 0.3. Third, the rounding mode in floats is neither floor nor ceiling, making it
difficult to implement algorithms where rounding is important. Finally, floats are very difficult
for formal verification.

Recommendations: Use fixed point decimal instead of floats

Customer’s response: An early version of the code used f64, but at the recommendation of
Certora, we switched our internal representations of prices to decimal fixed point. Don't have a
linked pull request since this is from before we made the repo public.

Fix Review: Fix confirmed

25

L-07 Red Black tree marks wrong color during removal, leading to an
unbalanced/inefficient tree

Severity: Low Impact: Low Likelihood: Medium

Files:
lib/src/red_black_tree.
rs

Status: Fixed Violated Property:
rule_remove_fix_matches_refe
rence_case3_left_child
rule_remove_fix_matches_refe
rence_case3_right_child

Description: During removal of a node in the RB tree the remove_fix() is called to re-paint the
nodes in the tree to the right color. In some cases the sibling’s child index is painted red when it
should be painted as the parent’s color.
This leads to an unbalanced tree, consuming more computation units for future operations.

Example of an unbalanced tree created as a result of the bug: If in the following tree the node 6
is removed the tree ends up with node 2 and its left child being colored red.

26

Recommendations: Set the correct color - the parent’s color rather than red

Customer’s response: Fixed in PR #193.
Likelihood is very low. We ran fuzz testing and it didn't run into it. It is a very specific 35 node tree.
Arguably, the impact is negligible since it is still a valid BST, just not balanced.

Fix Review: Fix confirmed

27

https://github.com/CKS-Systems/manifest/pull/193

Informational Issues

I-01 During cancellation, order_sequence_number isn’t checked, possibly emitting
wrong sequence number

Description: in batch_update() if the user supplies an order_index_hint then

order_sequence_number isn't checked.
This unchecked sequence number is then emitted as part of the event, possibly emitting the
wrong sequence number.

Recommendation: Check that the sequence number is right (or set it to the correct value if it’s
not set by the user)

Customer’s response: Fixed in PR #120

Fix Review: Fix confirmed

28

https://github.com/CKS-Systems/manifest/pull/120

C/C++

I-02 RestingOrder trees lookup function is broken for nodes with same price

Description: Resting order equality trait implementation checks for the price rather than order
sequence number.
This means that the lookup function might return the wrong order if there’s another order with
the same price.
Note: this doesn’t have any effect on current deployment since the lookup function isn’t used for
RestingOrder trees

impl PartialEq for RestingOrder {
fn eq(&self, other: &Self) -> bool {

(self.price) == (other.price)
}

}

Recommendation: Compare order sequence number rather than price

Customer’s response: Not confirmed. This does nothing though as explained in response to
I-06

29

JavaScript

JavaScript

I-03 unnecessary update of x as child of p in rotate left/right

Description: At the RB tree’s rotate left/right functions x is set as the child of p.
This update is unnecessary since x is already a child of p (and on the same side, right for rotate
left and left for rotate right).

Rotate left:

let g_index: DataIndex = index;
let p_index: DataIndex = self.get_right_index::<V>(g_index);
let x_index: DataIndex = self.get_right_index::<V>(p_index);
let y_index: DataIndex = self.get_left_index::<V>(p_index);
let gg_index: DataIndex = self.get_parent_index::<V>(index);

// P
{

// Does not use the helpers to avoid redundant NIL checks.
let p_node: &mut RBNode<V> = get_mut_helper::<RBNode<V>>(self.data(), p_index);
p_node.parent = gg_index;
p_node.left = g_index;
p_node.right = x_index;

}

Rotate right:

let g_index: DataIndex = index;
let p_index: DataIndex = self.get_left_index::<V>(g_index);
let x_index: DataIndex = self.get_left_index::<V>(p_index);
let y_index: DataIndex = self.get_right_index::<V>(p_index);
let gg_index: DataIndex = self.get_parent_index::<V>(index);

// P
{

// Does not use the helpers to avoid redundant NIL checks.
let p_node: &mut RBNode<V> = get_mut_helper::<RBNode<V>>(self.data(), p_index);
p_node.parent = gg_index;
p_node.left = x_index;
p_node.right = g_index;

}

30

Recommendation: Remove this unnecessary update

Customer’s response: Fixed in PR #216 .

Fix Review: Fix confirmed

31

https://github.com/CKS-Systems/manifest/pull/216

I-04 - Orders of zero price can be added to tree

Description: According to the whitepaper, Manifest is expected to enforce a minimum order size to ensure
trading can occur on the curve. Resting with price zero should be prevented

However, on the place_order function, there’s no check to prevent resting/posting an order with a zero price.

Recommendation: Add a check to prevent resting orders with zero price

Customer’s response: Fixed in PR #122

Fix Review: Fix confirmed

32

https://github.com/CKS-Systems/manifest/pull/122

I-05 - swap_nodes() doesn’t support swapping with node root as the second node

Description: The function swap_nodes() does not cover the case where the second node is the
root. This should not impact the correctness of the system, since the function is called on
internal nodes and their successor. Nevertheless, the function can be modified to support the
second case as well and prevent unexpected behavior if ever used in future unforeseen
scenarios.

Recommendation: Either support also swapping with the root node as the second node, or

clearly document that this function is only intended to be used from remove_by_index, for
example, by renaming it into swap_nodes_for_remove.

Customer’s response: Not confirmed. Renaming to be clearer that it is an internal
implementation detail only, not a general swap function. Update in PR #260.

33

https://github.com/CKS-Systems/manifest/pull/260

I-06 - Canceling an order might run out of compute units when no index hint is
provided

Description:When no hint index is provided for the users, the cancel_order() function is
called. This function iterates over both trees to search for the relevant sequence number to
delete. This means if the trees are large, this iteration may end up needing to iterate so many
times that the sequence number has not yet been found.

Recommendation: Consider using the lookup function to find the order (after fixing it, see I-02.
That would require the user to also pass the price in order to use the lookup function)

Customer’s response: Not confirmed. Working as intended. We want to encourage O(1) access
and don't really care if people hit the worst case on naive usage. The suggestion does not work.
The tree is sorted by price, so a sequence number equality check doesn't make a difference. We
would need a separate data structure with cmp operators for sequence numbers.

34

JavaScript

I-07 - Dead code in get_next_higher_index()

Description: The second part of the get_next_higher_index() isn’t reachable under current

implementation, since the function is only called from remove_by_index(), where the index is
internal and the successor is below.

fn get_next_higher_index<V: Payload>(&'a self, index: DataIndex) -> DataIndex {
if index == NIL {

return NIL;
}
// Successor is below us.
if self.get_right_index::<V>(index) != NIL {

let mut current_index: DataIndex = self.get_right_index::<V>(index);
while self.get_left_index::<V>(current_index) != NIL {

current_index = self.get_left_index::<V>(current_index);
}
return current_index;

}

// Successor is above, keep going up while we are the right child
let mut current_index: DataIndex = index;
while self.is_right_child::<V>(current_index) {

current_index = self.get_parent_index::<V>(current_index);
}
current_index = self.get_parent_index::<V>(current_index);

current_index
}

Recommendation:We have checked this function as part of the verification of
remove_by_index. In this context, the additional branch is not needed and is confusing. However,
if the function is intended to use elsewhere it can be kept unchanged. However, we want to
stress that we did not verify the code that is dead under current use.

Customer’s response: Fixed in PR #217 .

Fix Review: Fix confirmed

35

https://github.com/CKS-Systems/manifest/pull/217

JavaScript

I-08 - Duplicate variable declaration in insert_fix()

Description: The parent_color variable is declared and retrieved twice in the insert_fix()
function. The second declaration isn’t needed since the parent color didn’t change since then.

// Check the color of the parent. If it is black, then nothing left to do.
let parent_index: DataIndex = self.get_parent_index::<V>(index_to_fix);
let parent_color: Color = self.get_color::<V>(parent_index);

//

let grandparent_color: Color = self.get_color::<V>(grandparent_index);
let parent_color: Color = self.get_color::<V>(parent_index);
let parent_is_left: bool = self.is_left_child::<V>(parent_index);
let current_is_left: bool = self.is_left_child::<V>(index_to_fix);

Recommendation: Remove the second declaration

Customer’s response: Fixed in PR #219 .

Fix Review: Fix confirmed

36

https://github.com/CKS-Systems/manifest/pull/219

C/C++

I-09 - if blocks can be refactored into if-else

Description: The following if code blocks in the insert_fix() function can be refactored into
if-else code blocks since they’re mutually exclusive

if parent_is_left && current_is_left {
// implementation details

}
let index_to_fix_color: Color = self.get_color::<V>(index_to_fix);
// Case III: Uncle is black, left right
if parent_is_left && !current_is_left {

// implementation details
}
// Case IV: Uncle is black, right right
if !parent_is_left && !current_is_left {

// implementation details
}
// Case V: Uncle is black, right left
if !parent_is_left && current_is_left {

// implementation details
}

Recommendation: Refactor into if-else blocks

Customer’s response: Fixed in PR #218

Fix Review: Fix confirmed

37

https://github.com/CKS-Systems/manifest/pull/218

I-10 - Check that in_atoms is backed up by actual funds

Description: The Swap instruction takes an argument in_atoms that represents the maximal
amount that can be traded during the swap. This value is unchecked and can be arbitrary large.

While overall, Swap is safe because the traded amount is taken from the user-provided wallet,
and, therefore, will always be backed up, during the execution of the instruction this is not known.

We recommend checking that the in_atoms is not greater than the amount of tokens in the
user-provided Token Account.

Currently, this does not present a problem because the code uses checked arithmetic
exclusively. However, in the future, if the code is optimized to reduce the use of checked
arithmetic, an unchecked parameter may prevent optimizations or cause bugs.

Recommendation: Check that in_atoms is bounded above by amount in the

trader_base_account or trader_quote_amount as determined by the is_base_in
parameter.

Customer’s response: Fixed in PR #258

Fix Review: Fix confirmed

38

https://github.com/CKS-Systems/manifest/pull/258

C/C++

I-11 - Avoid complications of Effective Price by rounding in favor of large orders

Description: The effective price adds several complications in the code and introduces more
problems where a trader may not get the best price. Issue L-03 is another problem caused by
this.

The reason for introducing this effective price is to disincentivize traders to post multiple small
orders in the order book where they would profit from rounding errors. This is because swap
amounts are rounded in favor of the order in the order book (the maker). There is another very
easy way to solve this problem: round in favor of the larger order.

Recommendation: In swap instead of rounding in favor of the maker, the code should round in
favor of the taker when he matches the full order and in favor of the maker when the order is
only partially matched. This way, every user (taker and maker) is protected against the other
party introducing micro-trades. The effective price is no longer needed and orders can be
sorted by price instead. Partially fulfilled orders can keep their place in the book.

// on full match: round in favor of the taker
// on partial match: round in favor of the maker
let full_match: bool =

remaining_base_atoms >= other_order.get_num_base_atoms();
let quote_atoms_traded: QuoteAtoms = matched_price.checked_quote_for_base(

base_atoms_traded,
round_up: is_bid != full_match,

)?;

This has a nice side-effect: When posting a large order as a taker, only the very large match will
be a partial match, so there will be only one instance where the rounding is against the trader.
This guarantees that the maximum loss due to rounding errors is less than a single atom. This
also holds for posting a large order as a maker, as in this case there is only at most one full
match that is rounded against the maker. And even if you create a new order where part is
matched with the order book and the remaining order is added to the order book, the matching
parts will all round in the favor of the trader as they match fully and there will only be one time
where the rounding is against the trader. To summarize: there will be at most one loss due to
rounding for every order less than one quote atom will be lost due to this rounding.

39

The effective price is no longer necessary, because in the case of a full match the effective
price is better than the price, so the taker is guaranteed that the price he gets is the best price
even if rounding occurs.

Customer’s response: Adopted in PR #108.

Fix Review: Fix confirmed

40

https://github.com/CKS-Systems/manifest/pull/108

I-12 - Check that cancel_order_by_index allows a trader to cancel only their own
order.

Description: The function cancel_order_by_index removes the order at order_index that is
taken as parameter. Function cancel_order_by_index does not check that the order at
order_index belongs to the trader at trader_index (also taken as a parameter). As per the design,
this check is to be made by any function that calls cancel_order_by_index. The Manifest code
ensures this currently, however it is possible to make a mistake here with future changes.

Recommendation: Add a check in cancel_order_by_index that the order at order_index
belongs to the trader at trader_index.

Customer’s response: Not confirmed. Working as intended.

41

I-13 - Remove recursion in Red-Black Tree implementation

Description: Functions remove_fix, insert_fix, and lookup_index in red_black_tree.rs
used tail recursion. The use of recursion makes the code less predictable because it depends on
the available stack space and recursion limit in SBF VM. Recursion also complicates FV because
FV must account for the available stack space.

Recommendation: Replace recursion by loops

Customer’s response: Fixed in PR #174

Fix Review: Fix confirmed

42

https://github.com/CKS-Systems/manifest/pull/174

I-14 - swap_nodes() doesn’t support swapping nodes that are parent and child

Description: The function swap_nodes() does not cover three cases:
1. The second node is the left child of the first
2. The first node is the right child of the second
3. The first node is the left child of the second

In these cases, the pointers to the left and right children of the nodes after the execution of the
function result inconsistent. This should not impact the correctness of the system, since the
function is called on internal nodes and their successor. This issue is related to I-05. Observe
that the case in which the second node is the right child of the first is correctly supported.

Recommendation: Change the specification of the function swap_nodes to make it explicit that
it is not intended to be used in the aforementioned cases 1-3.

Customer’s response: Fixed in PR #224 .

Fix Review: Fix confirmed

43

https://github.com/CKS-Systems/manifest/pull/224

Formal Verification
Verification Notations

Formally Verified
The rule is verified for every state of the
contract(s), under the assumptions of the
scope/requirements in the rule.

Formally Verified After Fix
The rule was violated due to an issue in the
code and was successfully verified after
fixing the issue

Violated
A counter-example exists that violates one
of the assertions of the rule.

General Assumptions and Simplifications

1. We used Rust Compiler version 1.18.16 to generate SBF code.
2. Use of mocks

a. Mock for red-black tree: we employ a mock implementation of the red-black tree to
isolate and validate the correctness of the orderbook independently of the specific
tree implementation details. In particular, we use an abstraction in which we can
access precise information of two main traders, and any access to other traders
results in an error. Similarly, at most one bid or ask order can be accessed precisely,
while all the accesses to other orders results in an error.

b. Mock for QuoteAtomsPerBaseAtom: we keep the price to be the same format as

original [u64; 2] but restrict the price between [0, 0] and [0, u32::MAX]. We also
consider only up to 4 decimal points.

3. We disable global orders by munging the is_global method of RestingOrders to always

return false.

44

Formal Verification Properties

Verifying “no loss of funds”

- The “no loss of funds” invariant, in English, is stated as follows: the amount in the vault matches the sum of
balances contained in the orders and seats. We want to show that this invariant holds for both base and
quote tokens.

- To calculate the balances contained in orders, we introduce two additional fields ‘orderbook_base_atoms’
and ‘orderbook_quote_atoms’ for MarketFixed to store them. We also introduce an additional method of
the RestingOrder called ‘get_orderbook_atoms’ to calculate the balance stored in an order. The fields
‘orderbook_base_atoms’ and ‘orderbook_quote_atoms’ are updated wherever relevant.

- Similarly, we introduce additional fields `withdrawable_base_atoms` and `withdrawable_quote_atoms` to
store the sum of seat balances. These fields are also updated wherever relevant.

- With above changes, we can now state the “no loss of funds” as follows:
vault_base == orderbook_base + withdrawable_base
vault_quote == orderbook_quote + withdrawable_quote

- We show that “no loss of funds” is an invariant in the following way: for each function, we assume that “no
loss of funds” holds before the function, we execute the function, and finally assert that “no loss of funds”
holds at the end. All rules for “no loss of funds” follow this pattern.

- We show “no loss of funds” for deposit, withdraw, rest_remaining, cancel_order_by_index, cancel_order,
place_order and swap. Some functions, like claim_seat and release_seat, do not change any quantity
related to “no loss of funds”, so we do not consider them. For batch_update, we check that it calls
cancel_order and place_order at the end. These rules for batch_update are covered in the next section
Rules for Integrity.

- We use checked arithmetic when assuming the invariant, and saturating arithmetic when asserting the
invariant. This allows catching the overflow/underflow in computation.

- Due to L-01, we changed the direction of rounding in cancel_order_by_index. We also changed the code in
place_order after the orders are matched: originally, the maker is increased according to the matched
order, followed by the taker being decreased. This may cause an overflow when updating the withdrawable
balances. To avoid this, we change the order of increase and decrease. We first decrease the taker,
followed by increasing the maker.

Module General Assumptions
- Munging in place_order: we extract the matching loop in place_order into a separate function called

place_single_order. We verify “no loss of funds” for place_single_order.
- Munging in cancel_order: we unravel the bid/ask loop in cancel_order manually.
- Mock for red-black tree: as described in Sec. General Assumptions.
- Mocks for price: as described in Sec. General Assumptions.
- All rules for “no loss of funds” make the following assumption on the state of the market: (i) the Pubkeys of

the market_base_vault and market quote vault are unequal; (ii) there are two traders and one order in the

45

market; (iii) the Pubkeys of the two traders are unequal; (iv) the order on the market is not global and has
nondeterministic price and base atoms.

Module Properties

46

P-01. “no loss of funds” - deposit

Status: Verified

Rule Name Status Description Link to rule report

rule_deposit_b
ase

Verified This rule checks “no loss of funds” when base atoms
are deposited. Additional assumption: the Pubkeys
of trader’s vault andmarket’s vault are unequal.

Report

rule_deposit_q
uote

Verified This rule checks “no loss of funds” when quote
atoms are deposited. Additional assumption: the
Pubkeys of trader’s vault and market’s vault are
unequal.

Report

P-02. “no loss of funds” - withdraw

Status: Verified after fix

Rule Name Status Description Link to rule report

rule_withdraw_
base

Verified after fix This rule checks “no loss of funds” when base atoms
are withdrawn. Additional assumption: the Pubkeys
of trader’s vault and market’s vault are unequal. The
violation is due to H-01. The rule passes after
applying the fix.

Report
Report after fix

https://prover.certora.com/output/497546/b0a80612a83e42738a7ab483975cc879?anonymousKey=a356def2693c6b1505ed7d1a91a719d13f468132
https://prover.certora.com/output/497546/ba497eed6cae4130b7e281676bb69c67?anonymousKey=64474e50518a652c1a315f294e9ca15db8c6587e
https://prover.certora.com/output/497546/f153e0cf2398482b84f31c40441f073f?anonymousKey=c2c4816b3083fbf8b2c8f9f71b3d263864e32ba2
https://prover.certora.com/output/497546/94d62ad390374f9fa7751f6fc487746b?anonymousKey=96a318e1892ce2b3a7184989fd2eba75ac7a72e5

47

rule_withdraw_
quote

Verified after fix This rule checks “no loss of funds” when quote
atoms are withdrawn. Additional assumption: the
Pubkeys of trader’s vault and market’s vault are
unequal. The violation is due toH-01. The rule passes
after applying the fix.

Report
Report after fix

P-03. “no loss of funds” - rest_remaining

Status: Verified

Rule Name Status Description Link to rule report

rule_rest_remai
ning_bid

Verified This rule checks “no loss of funds” when
rest_remaining inserts a bid order into themarket.

Report

rule_rest_remai
ning_ask

Verified This rule checks “no loss of funds” when
rest_remaining inserts an ask order into themarket.

Report

P-04. “no loss of funds” - cancel_order_by_index

Status: Verified after fix

Rule Name Status Description Link to rule report

rule_cancel_or
der_by_index_
bid

Verified after fix This rule checks “no loss of funds” when
cancel_order_by_index cancels a bid order. The
violation is due to L-01. Fixing L-01 makes the rule
pass.

Report
Report after fix

https://prover.certora.com/output/497546/b56eb4a18d364ff99bec113988a992f8?anonymousKey=8f307553824a2a98d66f34a7fc3faaa77e26713a
https://prover.certora.com/output/497546/130f5a6ad19c4b1fb1dec315174b2668?anonymousKey=23a18530af481c1a0048204f09a277cb922edba5
https://prover.certora.com/output/497546/4ddc8c392c4c477e8f608b68256c53df?anonymousKey=aeaa41656a7c6d3f26f2f00dabef085330f7c748
https://prover.certora.com/output/497546/c4f99d7ab6a54b26b840af5f02138b26?anonymousKey=6493f4ab5e3e76f669313c3cb8d8c2c6f2e4d840
https://prover.certora.com/output/497546/22b74ec2dae14611be0127c6e044ddd2?anonymousKey=630ce69cc2447538c29b1ec34d9c6024683f16f3
https://prover.certora.com/output/497546/125c1054db924d7a8fc10370b750ae06?anonymousKey=307be9990af24bfb7559967f4c73a5c16ef8df0c

48

rule_cancel_or
der_by_index_a
sk

Verified This rule checks “no loss of funds” when
cancel_order_by_index cancels an ask order.

Report

P-05. “no loss of funds” - cancel_order

Status: Verified after fix

Rule Name Status Description Link to rule report

rule_cancel_or
der_bid

Verified after fix This rule checks “no loss of funds” when
cancel_order cancels a bid order. The violation is
due to L-01. Fixing L-01 makes the rule pass.

Report
Report after fix

rule_cancel_or
der_ask

Verified This rule checks “no loss of funds” when
cancel_order cancels an ask order.

Report

P-06. “no loss of funds” - place_order

Status:

Rule Name Status Description Link to rule report

rule_place_single_order
_canceled_bid

Verified This rule checks “no loss of funds”
when a bid order does not match
with an existing ask order because
it is expired.

Report

https://prover.certora.com/output/497546/f0aa81bcbf0c487d8b55879ffeea2aa2?anonymousKey=b5ac5fd552436fac0af32968c9c6200e0aeb13a2
https://prover.certora.com/output/497546/b1ff0ddbcddd427f981174a779e25185?anonymousKey=f55f4ae60ea00e3e8c078b6ffb61f7fba655cfdb
https://prover.certora.com/output/497546/b1271d390d964d998c5c6912d7d9d4ae?anonymousKey=0827d19c86319004089d45eb851931f16f5a49ce
https://prover.certora.com/output/497546/68678f60ba4948bea2c9f22df03fa239?anonymousKey=f73fc36f6f24b6a0fade9d76f4f7652912f9dcb3
https://prover.certora.com/output/497546/e74578530c7047d29d08faf4aa5149fa?anonymousKey=51e698b6dae3e944eedb639b7ea9d6fb699e1e9f

49

rule_place_single_order
_canceled_ask

Verified This rule checks “no loss of funds”
when an ask order does not match
with an existing bid order because
it is expired.

Report

rule_place_single_order
_unmatched_bid

Verified This rule checks “no loss of funds”
when a bid order does not match
with an existing ask order because
of its price.

Report

rule_place_single_order
_unmatched_ask

Verified This rule checks “no loss of funds”
when an ask order does not match
with an existing bid order because
of its price.

Report

rule_place_single_order
_full_match_bid

Verified This rule checks “no loss of funds”
when a bid order fully matches with
an existing ask order.

Report

rule_place_single_order
_full_match_ask

Verified This rule checks “no loss of funds”
when an ask order fully matches
with an existing bid order.

Report

rule_place_single_order
_partial_match_bid

Verified This rule checks “no loss of funds”
when a bid order partially matches
with an existing ask order.

Report

rule_place_single_order
_partial_match_ask

Verified This rule checks “no loss of funds”
when an ask order partially
matches with an existing bid order.

Report

https://prover.certora.com/output/497546/257a56fb628a4757be207184f3a51c20?anonymousKey=808b0c5103f409dc3a5735d3760317f3e3bf0411
https://prover.certora.com/output/497546/5cbb3fc188734f1ebcd99b1d4cf0f0b0?anonymousKey=a10a51d8ce73b118e0a156e8b0ebe8930412c5a0
https://prover.certora.com/output/497546/1080a4e0aea944298d440f67c7b08c55?anonymousKey=4f8b73fa1c10d448659def094e30f887f5707fe0
https://prover.certora.com/output/497546/047398cc3f4c43a69722261e658cebac?anonymousKey=24c0c8cb1f74814fe773eb686cc857c820521653
https://prover.certora.com/output/497546/284d313dd32a48d38eb073519ac4795f?anonymousKey=4df0ce2b4c932e10e2484029a3b6310edabdd234
https://prover.certora.com/output/497546/fef5a67f53de498d9357a0df69946f55?anonymousKey=a2b88b2d677e334832d74e2b2b460e2b542c7e50
https://prover.certora.com/output/497546/fb0097ef00c7407c86ad896629759093?anonymousKey=a10764c5c268b466707c72c89383a0c096663120

50

P-07. “no loss of funds” - swap

Status: Verified

Rule Name Status Description Link to rule report

rule_swap_base_e
xact

Verified This rule checks “no loss of funds” for swap with
is_base_in = true, is_exact_in = true

Report

rule_swap_base_n
ot_exact

Verified This rule checks “no loss of funds” for swap with
is_base_in = true, is_exact_in = false

Report

rule_swap_quote_
exact

Verified This rule checks “no loss of funds” for swap with
is_base_in = false, is_exact_in = true

Report

rule_swap_quote_
not_exact

Verified This rule checks “no loss of funds” for swap with
is_base_in = false, is_exact_in = false

Report

https://prover.certora.com/output/497546/db16dd84ed7f4dfc90366a4641fa12f7?anonymousKey=68fbdca117ad24cd428f467d6d1659a95750af40
https://prover.certora.com/output/497546/0c1d54c5320949009ca93383658de8d8?anonymousKey=08d65824949a902c504f32eb9b842a60d76d492b
https://prover.certora.com/output/497546/cb98c575c97d49edbbe376a64c00beb0?anonymousKey=5fc013597073004b41b002677d8de9c7c6ba4274
https://prover.certora.com/output/497546/9bcdce12a45a48c8bc20975eba243522?anonymousKey=9229aa3529e9d59c825062214465272a2a010687

Formal Verification Properties

Rules for the integrity of deposit, withdrawal, order cancelation and batch
update

The rules in this module check the correctness and integrity of deposit, withdraw, cancel_order_by_index and
batch_update.

Module General Assumptions
- Mock for a red-black tree: as described in Sec. General Assumptions.
- Mocks for price: as described in Sec. General Assumptions.

Module Properties

51

P-01. Integrity of deposit

Status: Verified

Rule Name Status Description Link to rule report

rule_deposit_d
eposits

Verified This rule checks for deposit the following two
properties: (i) the trader balances and vault amounts
are updated correctly and (ii) no other trader’s
balance is affected.

Report

https://prover.certora.com/output/497546/e010e9cb7b834fffb14cd11b74ae3f22?anonymousKey=7ed11e814698e65ddda69b044ff0212c051a78c0

52

P-02. Integrity of withdraw

Status: Verified after fix

Rule Name Status Description Link to rule report

rule_withdraw_
withdraws

Verified after fix This rule checks for withdraw the following two
properties: (i) the trader balances and vault amounts
are updated correctly and (ii) no other trader’s
balance is affected. The violation is due toH-01. The
rule passes after applying the fix.

Report
Report after fix

P-03. No unexpected revert on cancel_order_by_index

Status: Verified

Rule Name Status Description Link to rule report

rule_cancel_order_b
y_index_no_revert_
bid

Verified This rule verifies that cancel_order_by_index does
not have an unexpected revert, i.e., not caused by
require!(..). Same assumption on the pre-condition
of the market as “no loss of funds”. An additional
assumption that seat balance does not overflow. The
order is assumed to be a bid order.

Report

rule_cancel_order_b
y_index_no_revert_
ask

Verified Same as above, except the order is assumed to be an
ask order.

Report

https://prover.certora.com/output/497546/58d7827ef39849de8bcaa6234f254cc0?anonymousKey=cac915524406d58cd7ee636b174bfe9d652f730e
https://prover.certora.com/output/497546/2f24cd34c7214dbb8611c6b75cabb8d7?anonymousKey=6d5ebd1df3dc06ddaeefff73558fb42fcd9bd1fe
https://prover.certora.com/output/497546/5bc46a6d08584148ae2409c3955ddca4?anonymousKey=5c09af17626ec18a8e80e55c7381e709f68dcf08
https://prover.certora.com/output/497546/17e2f67c1844423cb127d957d881d5a0?anonymousKey=b9577cab453da6b3a92e9bf55a7a0af4c227d38a

53

P-04. Integrity of batch_update

Status: Verified

Rule Name Status Description Link to rule report

rule_integrity_of_bat
ch_update_cancel_b
id

Verified This rule checks that batch_update, when called on 1
bid order to cancel and no orders to place, invokes
cancel_order correctly. This establishes no loss of
funds for this case.

Report

rule_integrity_of_bat
ch_update_cancel_a
sk

Verified This rule checks that batch_update, when called on 1
ask order to cancel and no orders to place, invokes
cancel_order correctly. This establishes no loss of
funds for this case.

Report

rule_integrity_of_bat
ch_update_cancel_h
int_bid

Verified This rule checks that batch_update, when called on 1
bid order to cancel with hint and no orders to place,
invokes cancel_order_by_index correctly. This
establishes no loss of funds for this case.

Report

rule_integrity_of_bat
ch_update_cancel_h
int_ask

Verified This rule checks that batch_update, when called on 1
ask order to cancel with hint and no orders to place,
invokes cancel_order_by_index correctly. This
establishes no loss of funds for this case.

Report

rule_integrity_of_bat
ch_update_place_or
der_bid

Verified This rule checks that batch_update, when called on 1
bid order to place and no orders to cancel, invokes
place_order correctly. This establishes no loss of
funds for this case.

Report

rule_integrity_of_bat
ch_update_place_or
der_ask

Verified This rule checks that batch_update, when called on 1
ask order to place and no orders to cancel, invokes
place_order correctly. This establishes no loss of
funds for this case.

Report

https://prover.certora.com/output/497546/712ace660a884bd8a80723f443316b13?anonymousKey=7c447112524eed4989bfe584be61c1e3dae1a292
https://prover.certora.com/output/497546/c88c230827e244f18c677cac812f4c3f?anonymousKey=10f407d0a0286a2007b905a5e2a085f93f749c58
https://prover.certora.com/output/497546/e1efe1110de0425f87a162f8f1a4eece?anonymousKey=b0319108f3f7027e4bfa895e7d3455d0dd13d27b
https://prover.certora.com/output/497546/f7294f146bce4e62b5572ef941786db1?anonymousKey=6d6f90decfe6be40fecc402dbdfb5423fe6336d8
https://prover.certora.com/output/497546/21b0a24d70584e2e8e66c61ba7d2dcad?anonymousKey=f6813fdca4b0dae5c15bbe62929727c459fc887f
https://prover.certora.com/output/497546/b7d6375fe3064db0b53a9fcb1df3dc8a?anonymousKey=9d5d65aea2c80e9dfc50a62385d0af9d84a606e4

Formal Verification Properties

Rules for the matching mechanism

The rules in this module check the correctness and integrity of the matching mechanism.

Module General Assumptions
- Mock for a red-black tree: as described in Sec. General Assumptions.
- Mocks for price: as described in Sec. General Assumptions.
- All rules for “no loss of funds” make the following assumption on the state of the market: (i) the Pubkeys of

the market_base_vault and market quote vault are unequal; (ii) there are two traders and one order in the
market; (iii) the Pubkeys of the two traders are unequal; (iv) the order on the market is not global and has
nondeterministic price and base atoms.

Module Properties

54

P-01. Correctness of the matching mechanism

Status: Verified

Rule Name Status Description Link to rule report

rule_matching_if_m
aker_order_exists_
bid

Verified Rules to check if a matching maker order exists in
the book, then matching will happen. The order to
place is a bid order.

Report

rule_matching_if_m
aker_order_exists_
ask

Verified Rules to check if a matching maker order exists in
the book, then matching will happen. The order to
place is an ask order.

Report

rule_crossed_price
s_if_matched_bid

Verified Rules to check if matching happened, then prices
must have crossed. The order to place is a bid order.

Report

rule_crossed_price
s_if_matched_ask

Verified Rules to check if matching happened, then prices
must have crossed. The order to place is an ask
order.

Report

https://prover.certora.com/output/497546/92176ad0fc174dc2bbc8a90d370fda0a?anonymousKey=38300e393dc15c14ff739586f31c52fa82040b11
https://prover.certora.com/output/497546/8203f98eaa81441a8887c5bba36f6a05?anonymousKey=d7ec2eee147c7527f4a6d481564277b9d233799b
https://prover.certora.com/output/497546/f8999ef71ef44c059b80f6738d2aed25?anonymousKey=5d8df431d0d56755648aeb99e1e974438820bb1a
https://prover.certora.com/output/497546/a6e4fc1e410742d1af667e5909c5729a?anonymousKey=b0880b563e2b79f3c2735e986cc29d67a09933ac

55

rule_place_single_o
rder_full_match_bal
ances_bid

Verified Rules to verify that trader balances are modified as
expected in the fully_matched case of
place_single_order. The order to place is a bid order.

Report

rule_place_single_o
rder_full_match_bal
ances_ask

Verified Rules to verify that trader balances are modified as
expected in the fully_matched case of
place_single_order. The order to place is an ask
order.

Report

rule_place_single_o
rder_partial_match_
balances_bid

Verified Rules to verify that trader balances are modified as
expected in the partially_matched case of
place_single_order. The order to place is a bid order.

Report

rule_place_single_o
rder_partial_match_
balances_ask

Verified Rules to verify that trader balances are modified as
expected in the partially_matched case of
place_single_order. The order to place is an ask
order.

Report

rule_matching_orde
r_removed_if_fully_
matched_bid

Verified Rules to check if the maker_order is fully_matched,
then it is removed. The order to place is a bid order.

Report

rule_matching_orde
r_removed_if_fully_
matched_ask

Verified Rules to check if the maker_order is fully_matched,
then it is removed. The order to place is an ask order.

Report

rule_matching_fully
_matched_if_order_
removed_bid

Verified Rules to check if themaker_order was (i) not expired
(ii) matched on price and (iii) removed from the tree,
then it must have been fully_matched. The order to
place is a bid order.

Report

rule_matching_fully
_matched_if_order_
removed_ask

Verified Rules to check if themaker_order was (i) not expired
(ii) matched on price and (iii) removed from the tree,
then it must have been fully_matched. The order to
place is an ask order.

Report

rule_matching_decr
ease_maker_order_
atoms_bid

Verified Rules to check that the atoms contained in the
maker_order cannot increase after matching. The
order to place is a bid order.

Report

https://prover.certora.com/output/497546/eb9d8c1c7b9c4ce8a617f8942da30783?anonymousKey=e1ae1fed3d7343c64bb63075dba6cb569361640e
https://prover.certora.com/output/497546/73f21b36cbd84f43bb8cacd7319725e3?anonymousKey=73b5ccb5a03cf65eabbb2199d14ce3207d247c19
https://prover.certora.com/output/497546/866a2dfa5ef846d3be033f27b182e73e?anonymousKey=1f66d72e2ab31514a3082454d9525ef6b3abd6db
https://prover.certora.com/output/497546/7c476e606fbd474bbbc7c38b9cacef90?anonymousKey=031163272d109f19e9b6fd0710d17d3249b13143
https://prover.certora.com/output/497546/b9e8a01bb5ba4058b2ae3420f6d3f46d?anonymousKey=ddf87ce701054a1422683769f3e2f86db9500848
https://prover.certora.com/output/497546/fc0ebc7e05f04e21b26af9110be95f4c?anonymousKey=63a4a8b747368c3c21cfc9c2853a536f054c789d
https://prover.certora.com/output/497546/1b150e777445415d815cd6206c258a35?anonymousKey=c877fae326a7e3b73929b7e2607bf2d9475f7451
https://prover.certora.com/output/497546/7664e3adc48c4425987a2e41a2e1daf7?anonymousKey=885f6d2dbca2d6286ae6f2a3e27d4830de3fdb91
https://prover.certora.com/output/497546/9230fa78478a4eb59c6c192df19d9bec?anonymousKey=86cd67103a3fa3bf20ec9e71982387eb29fde52f

56

rule_matching_decr
ease_maker_order_
atoms_ask

Verified Rules to check that the atoms contained in the
maker_order cannot increase after matching. The
order to place is an ask order.

Report

https://prover.certora.com/output/497546/87a09adb1ecd42c9bc8a2725cda36115?anonymousKey=9c9d39c9e4fbe6ba664fcde0506df03e24ab42f6

Formal Verification Properties

Red-Black Tree

Module General Assumptions
- The following properties are proved for the lib/src/red_black_tree.rsmodule.
- The red-black tree is parametrized by the Payload type, and in our rules we use a TestOrder payload type

with a single u64 field called order_id
- We verify that the functions insert_fix and remove_fixmatch the behavior of a reference implementation.

As reference we use the 4th edition of "Introduction to Algorithms", ISBN 026204630X. The functions are
described in Chapter 13, which starts at page 331. The function insert_fix corresponds to algorithm
RB-Insert-Fixup described at page 339, while remove_fix corresponds to RB-Delete-Fixup described at
page 351.

- The rules to check that insert_fixmatches the reference implementation assume that the grandparent of
the node that has to be fixed is the child of the root. Furthermore, we ensure that the nodes in the subtrees
that are not directly modified by the function have nondeterministic children and have nondeterministic
color.

- The rules to check that remove_fixmatches the reference implementation assume that the parent of the
node that has to be fixed is the child of the root. Furthermore, we ensure that the nodes in the subtrees
that are not directly modified by the function have nondeterministic children and have nondeterministic
color.

- As mentioned above, in addition to PR #108, we also cherry picked commit 714be51, which removes the tail
recursion from the insert_fix and remove_fix functions. This makes it easier verifying the correctness of
those critical parts of the code.

Module Properties

57

P-01. Correctness of rotation

Status: Verified

Rule Name Status Description Link to rule report

rule_rotate_left Verified This rule verifies that rotate_left properly sets the
indices of all the nodes involved in the rotation. We
verify this for a six-node tree, where the node that is

Report

https://github.com/CKS-Systems/manifest/commit/714be51160ab7849affcac7c555327cf53acb926
https://prover.certora.com/output/1324651/d996476952ad4ce8bf05d8c08e1da3d0?anonymousKey=32ba4373299f39535aa555adfe5c3a9f8cf409f2

58

being rotated has a parent, a left child, a right child,
and the right child has both a left and a right child.

rule_rotate_rig
ht

Verified This rule verifies that rotate_right properly sets the
indices of all the nodes involved in the rotation. We
verify this for a six-node tree, where the node that is
being rotated has a parent, a right child, a left child,
and the left child has both a left and a right child.

Report

P-02. insert_fixmatches reference implementation

Status: Verified

Rule Name Status Description Link to rule report

rule_insert_fix_
matches_refere
nce_no_parent

Verified This rule verifies that insert_fix matches the
reference implementation in case that the node has
no parent, namely it is the root.

Report

rule_insert_fix_
matches_refere
nce_case1_left
_child

Verified This rule verifies that insert_fix matches the
reference implementation in case 1, when the parent
of the node that has to be fixed is a left child.

Report

rule_insert_fix_
matches_refere
nce_case2_left
_child

Verified This rule verifies that insert_fix matches the
reference implementation in case 2, when the parent
of the node that has to be fixed is a left child.

Report

rule_insert_fix_
matches_refere
nce_case3_left
_child

Verified This rule verifies that insert_fix matches the
reference implementation in case 3, when the parent
of the node that has to be fixed is a left child.

Report

https://prover.certora.com/output/1324651/2191305d384f4e1580c6b1f47b69080c?anonymousKey=da276b54f16f20305e9bbb122a0e957dfe90f823
https://prover.certora.com/output/1324651/033530e2c70e41ed8cf31a4ea753cce5?anonymousKey=ec6fbc04506ccae5cfda393524815857857b3a62
https://prover.certora.com/output/1324651/a5c24414e6474e41a88ab10dc79c6daf?anonymousKey=cd48e4ae54dc4fd78c438afd760bb26b05808ffc
https://prover.certora.com/output/1324651/812c1b40ea3d46ea9808ef665d80b059?anonymousKey=b30a26c8da1090152380228e5e31c3c18a2bf543
https://prover.certora.com/output/1324651/a070fcfdacdb4503941622abd35d6629?anonymousKey=3c7c6687e1bab9fe98ab5e509fe7b1791071c0d8

59

rule_insert_fix_
matches_refere
nce_case1_righ
t_child

Verified This rule verifies that insert_fix matches the
reference implementation in case 1, when the parent
of the node that has to be fixed is a right child.

Report

rule_insert_fix_
matches_refere
nce_case2_righ
t_child

Verified This rule verifies that insert_fix matches the
reference implementation in case 2, when the parent
of the node that has to be fixed is a right child.

Report

rule_insert_fix_
matches_refere
nce_case3_righ
t_child

Verified This rule verifies that insert_fix matches the
reference implementation in case 3, when the parent
of the node that has to be fixed is a right child.

Report

P-03. remove_fixmatches reference implementation

Status: Verified after fix

Rule Name Status Description Link to rule report

rule_remove_fi
x_matches_refe
rence_case1_le
ft_child

Verified This rule verifies that remove_fix matches the
reference implementation in case 1, when the node
that has to be fixed is a left child. In the reference
implementation they recolor the sibling and the
parent, and then they perform a rotation. After that,
they keep considering the other cases, since case 1
can be then reduced to one of the subsequent cases.
This is not necessary in remove_fix, since the index
that is returned is index_1, which will then be
handled in the while loop in the function remove in a
subsequent iteration. Therefore, we check the state
of case 1 after executing the lines 5-8 in the
pseudocode.

Report

https://prover.certora.com/output/1324651/343dc3bc097f4bcdaaabe28722597cd6?anonymousKey=78319bc0fbcbb02d7ef81724a7750631936c5acc
https://prover.certora.com/output/1324651/d72490ba4b8e4a8987b7114c3a4e735a?anonymousKey=804436ac72c402f45bedaa2da0140cd8aaf607be
https://prover.certora.com/output/1324651/d0377a32d8604961a78e5273591ed921?anonymousKey=9aba8488610b114ce4c76f4889cb79254af62357
https://prover.certora.com/output/1324651/c93df16aa8d4487682e470cc6c697670?anonymousKey=eb1f1b44fff1546c8d754f82e1b98f2f3d930653

60

rule_remove_fi
x_matches_refe
rence_case2_le
ft_child

Verified This rule verifies that remove_fix matches the
reference implementation in case 2, when the node
that has to be fixed is a left child.

Report

rule_remove_fi
x_matches_refe
rence_case3_le
ft_child

Verified after fix This rule verifies that remove_fix matches the
reference implementation in case 3, when the node
that has to be fixed is a left child. This is due to L-07.

Report before fix
Report after fix

rule_remove_fi
x_matches_refe
rence_case4_le
ft_child

Verified This rule verifies that remove_fix matches the
reference implementation in case 4, when the node
that has to be fixed is a left child.

Report

rule_remove_fi
x_matches_refe
rence_case1_ri
ght_child

Verified This rule verifies that remove_fix matches the
reference implementation in case 1, when the node
that has to be fixed is a right child. In the reference
implementation they recolor the sibling and the
parent, and then they perform a rotation. After that,
they keep considering the other cases, since case 1
can be then reduced to one of the subsequent cases.
This is not necessary in remove_fix, since the index
that is returned is index_1, which will then be
handled in the while loop in the function remove in a
subsequent iteration. Therefore, we check the state
of case 1 after executing the lines 26-29 in the
pseudocode.

Report

rule_remove_fi
x_matches_refe
rence_case2_ri
ght_child

Verified This rule verifies that remove_fix matches the
reference implementation in case 2, when the node
that has to be fixed is a right child.

Report

rule_remove_fi
x_matches_refe
rence_case3_ri
ght_child

Verified after fix This rule verifies that remove_fix matches the
reference implementation in case 3, when the node
that has to be fixed is a right child. This is due to
L-07.

Report before fix
Report after fix

rule_remove_fi
x_matches_refe
rence_case4_ri
ght_child

Verified This rule verifies that remove_fix matches the
reference implementation in case 4, when the node
that has to be fixed is a right child.

Report

https://prover.certora.com/output/1324651/c38d4947f78240efaf18a697b2d8967c?anonymousKey=cfab6fed207039503a2a98a0e305f0bcf55abaa8
https://prover.certora.com/output/1324651/f9e45c5c7cbb4db3ad3e2ecc31b1aacc?anonymousKey=f960ba01fce1180ccf61a34f4beea92cfc28e7e6
https://prover.certora.com/output/1324651/784fe13d1067458490968c49a282d253?anonymousKey=eb5a07a3c5458ee2ed4135be3aac4f17cebaddba
https://prover.certora.com/output/1324651/32389197408a42f99aef8fd19c2960a5?anonymousKey=6c73f3d46b553a24b7f90988a9d5b8dc8262d1f0
https://prover.certora.com/output/1324651/095600b3390f4f49a5030dd240493d37?anonymousKey=aff93bea3fe1dbec3dcd9da91c32ecd8a37d67fa
https://prover.certora.com/output/1324651/4c75619f4d024060b0689f19fa503373?anonymousKey=8b6d0d442f9747c7ba86f27b4b569568f398ae3c
https://prover.certora.com/output/1324651/e873618db1c34e59ba6b0f4300963496?anonymousKey=4e12b047e26fe75cd02ac09bf6f6110a72c7d584
https://prover.certora.com/output/1324651/1223b5edde7f414c8c85581a5db65041?anonymousKey=da7bd25b430d075c728c3c2438ef8894bc1df240
https://prover.certora.com/output/1324651/e10cbdc097934b4db91d990ea854f4cf?anonymousKey=c5a29828e63a6bd26d7b3019dd5f0b54f67ee249

61

P-04. insert correctly updates max_index

Status: Verified

Rule Name Status Description Link to rule report

rule_insert_upd
ates_max_inde
x_empty_tree

Verified This rule verifies that max_index is correctly updated
after inserting a node in an empty tree.

Report

rule_insert_upd
ates_max_inde
x_non_empty_t
ree_max

Verified This rule verifies that max_index is correctly updated
after inserting an element that is greater than any
other in a non-empty tree. We verify this for a
two-node tree with nondeterministic values by
inserting a new nondeterministic value that is
greater than any other. The left children of the two
nodes are nondeterministic and represent arbitrary
subtrees.

Report

rule_insert_upd
ates_max_inde
x_non_empty_t
ree_not_max

Verified This rule verifies that max_index is not updated after
inserting an element that is smaller than the
maximum in a non-empty tree. We verify this for a
two-node tree with nondeterministic values by
inserting a new nondeterministic value that is
smaller than the max element. The left child of the
root is nondeterministic and represents an arbitrary
subtree.

Report

https://prover.certora.com/output/1324651/20b318effd02480cae01be3e7079ed5e?anonymousKey=6b13a9db4efa8193d0f24274645567d9cbb6b57a
https://prover.certora.com/output/1324651/c1037c77595744f880ae1d2d7e9d65f3?anonymousKey=6f7b213b7397f1604bb1bf05778fbc990296f5f8
https://prover.certora.com/output/1324651/de1ff2237e044cf8a39004ae2338846d?anonymousKey=183e56805ee8913ea4aad73656e5b83bfe11d778

62

P-05. remove correctly updates max_index

Status: Verified

Rule Name Status Description Link to rule report

rule_remove_u
pdates_max_in
dex_single_nod
e_tree

Verified This rule verifies that max_index is correctly updated
after removing a node from a single-node tree.

Report

rule_remove_u
pdates_max_in
dex_non_empt
y_tree_max

Verified This rule verifies that max_index is correctly updated
after removing themax element in a non-empty tree.
We verify this for a three-node tree with
nondeterministic values by removing the max
element. The left children of the two nodes that will
not be removed are nondeterministic and represent
arbitrary subtrees.

Report

rule_remove_u
pdates_max_in
dex_non_empt
y_tree_not_ma
x

Verified This rule verifies that max_index is not updated after
removing an element that is not the max in a
non-empty tree. We verify this for a three-node tree
with nondeterministic values by removing the right
child of the root. The left child of the root is
nondeterministic and represents an arbitrary
subtree.

Report

https://prover.certora.com/output/1324651/b8db321770074ed9ac125b9c20c0db25?anonymousKey=7539475a85579c0216f14f495abebcdd69d68aaa
https://prover.certora.com/output/1324651/752cd722f64a404db746d86c1ebad2aa?anonymousKey=3d986c17c45641b17b0a417f3075bb3a748f6605
https://prover.certora.com/output/1324651/336dd465359244099623f0e4d453f3ae?anonymousKey=728145de6c86046b7bf6d85b345a5b1baf953a13

63

P-06. Correctness of swap_nodes

Status: Verified after Fix

Rule Name Status Description Link to rule report

rule_swap_inte
rnal_nodes_left
_children

Verified This rule verifies that swap_nodes behaves as
expected in the case that the two nodes are internal
nodes with parents and children. Both nodes are left
children.

Report

rule_swap_inte
rnal_nodes_rig
ht_children

Verified This rule verifies that swap_nodes behaves as
expected in the case that the two nodes are internal
nodes with parents and children. Both nodes are
right children.

Report

rule_swap_inte
rnal_nodes_firs
t_is_root

Verified This rule verifies that swap_nodes behaves as
expected in the case that the first node is the root
and the second is an internal node that is not
adjacent to the first.

Report

rule_swap_inte
rnal_nodes_sec
ond_is_root

Verified after fix This rule verifies that swap_nodes behaves as
expected in the case that the second node is the
root and the first is an internal node that is not
adjacent to the second. This is due to I-05.
After the fix, the rule is no longer relevant since the
spec changed.

Report

rule_swap_nod
es_with_one_c
hild_left_right

Verified This rule verifies that swap_nodes behaves as
expected in the case that the two nodes have only
one child, respectively the left and the right.

Report

rule_swap_nod
es_with_one_c
hild_right_left

Verified This rule verifies that swap_nodes behaves as
expected in the case that the two nodes have only
one child, respectively the right and the left.

Report

https://prover.certora.com/output/1324651/6b4d3b652ba74cb695d1488fc2ac6c95?anonymousKey=0f238d3b59f7cc393ce2b73bf6f9b0b0a0b9bb4b
https://prover.certora.com/output/1324651/0799942ab4bf48909c21072b1b0326ab?anonymousKey=2f6e841a61f0565970212d889e0f4c54e4900cda
https://prover.certora.com/output/1324651/aa5f179ecf564196b30781d42036e8a0?anonymousKey=b8e99dea162635c563452f9716a78fe1cd5c7ac1
https://prover.certora.com/output/1324651/7612e689bdbd47a4930b3f2a3bae3250?anonymousKey=026789f7295f08963a52703a0add8d48a1c50ca4
https://prover.certora.com/output/1324651/aa34ea47301e497087dcbce2096e4619?anonymousKey=996f739ee4678e53645dfbbdb1ab7ec731d37558
https://prover.certora.com/output/1324651/885503b95b7e43b1a5c2cd935dc06be4?anonymousKey=4d19b2b609b565c392476bc6a0d955967749124b

64

rule_swap_leav
es

Verified This rule verifies that swap_nodes behaves as
expected in the case that the two nodes are leaves.

Report

rule_swap_pare
nt_right_child

Verified This rule verified that swap_nodes behaves as
expected in the case that the second node is the
right child of the first.

Report

rule_swap_pare
nt_left_child

Verified after fix This rule verified that swap_nodes behaves as
expected in the case that the second node is the left
child of the first. This is due to I-14.

Report before fix
Report after fix

rule_swap_righ
t_child_parent

Verified after fix This rule verified that swap_nodes behaves as
expected in the case that the first node is the right
child of the second. This is due to I-14.

Report before fix
Report after fix

rule_swap_left_
child_parent

Verified after fix This rule verified that swap_nodes behaves as
expected in the case that the first node is the left
child of the second. This is due to I-14.

Report before fix
Report after fix

https://prover.certora.com/output/1324651/e46ad1359461484b89e929353dddf2b4?anonymousKey=c6108c993fd17098a0cb163e2730fb90209472f2
https://prover.certora.com/output/1324651/8b2ecdf402ee40eaa2f5558d9f76ad09?anonymousKey=8a4682abfb1e812a62d1bf8be472a4eb25bf976c
https://prover.certora.com/output/1324651/9f79cc83eb85435094353d27ec49f7a4?anonymousKey=419bbfb96d873dd02ed686bafcfba820d52ec45c
https://prover.certora.com/output/1324651/64373d62d4fa4a7aa82eef94c01a7c86?anonymousKey=a2ec3d258d5ff33ccbf258df218337ae3310f69f
https://prover.certora.com/output/1324651/531569f0a7bd408ea925b2839eb2ed33?anonymousKey=d8e81a2fafa16d8630a860102ad0728a82d1f96b
https://prover.certora.com/output/1324651/b36fc243603148e2983918fb2b6b3b2b?anonymousKey=cdd9163d292302a0b44920ded261466450378feb
https://prover.certora.com/output/1324651/baa93248f06b417bbb4582e502f9c576?anonymousKey=c041f59109f9de29f8ce0da2a3b08dc987fe9405
https://prover.certora.com/output/1324651/2bd6416499af4b1ab51728bfd63348dd?anonymousKey=721ebc7a19d6dcc4c4907fc5830cd30fffe1fbe1

Disclaimer
Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora
Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

65

Appendix - FV Plan for
Red-Black Tree
Context: We want to show that the implementation of the red-black-tree in lib/src/red_black_tree.rs is a
correct implementation of a Red-Black-Tree data structure.

General Approach

We use the Certora Prover to show that the code faithfully implements an algorithm of a reference
implementation. A reference implementation is either

1. a known to be correct algorithm from a text-book on algorithms;
2. a modification created by Certora of an algorithm from (a) that fits closer to the given

implementation; or
3. An algorithm that has been previously verified with a manual theorem prover (e.g., Coq, Lean, or

Dafny)

Note that a reference implementation is not deterministic. Strictly speaking, it is not an algorithm. It is a
specification of all individual functions (e.g., insert, insert_fix, rotate_left, etc.) such that any
implementation that satisfies the specification individually is a correct implementation of the
Red-Black-Tree. That is, the tree is a sorted balanced binary tree.

This is a typical approach for code verification in which code is verified against low-level specifications
(i.e., a reference implementation) and the proof of correctness of reference implementation is done
independently of the code. Since the proof of reference implementation does not change between
different implementations, it is done once. Most times, informally in a textbook or paper that presents the
algorithm.

The above is required because verification of an abstract data structure is unbounded. The proof is
parametric on data structure size. A proof on code, on the other hand, takes into account the restriction
placed by finitely available memory and finite representation of numbers.

66

Specific Approach

We have found several formally verified reference implementations. Unfortunately, they do not follow the
algorithm implemented by manifest. Specifically, it seems that the left-leaning-red-black-tree variant is
easier to implement, and is, therefore, often used in verification case studies [1].

We have found that the algorithm in "Introduction to Algorithms 4th edition - Cormen, Leiserson,
Rivest, Stein" (Chapter 13) is very close to the current implementation. Therefore, we have
adopted it as the reference implementation. If we are unable to show that the implementation
refines the reference implementation, we will either adjust the reference implementation (if the
proof of correctness of the modification is obvious), or suggest how to modify the
implementation to match the reference.

Detailed Verification Properties

The following lists the properties that we are establishing of the functions in red_black_tree.rs

1. fn lookup_index()
a. This function is recursive. We cannot guarantee that it will not run out of stack.

2. fn insert
a. Correctly updates root_index and max_index
b. Correctly calls BST insertion (insert_node_no_fix)
c. Always calls insert_fix to fix any issues introduced by insertion

3. fn insert_fix(index)
a. The function correctly restores the local red-black-tree properties by correctly updating

the tree region determined by index: index (C), parent (P), grandparent (G), uncle (U), and
grandgrandparent (GG) as determined by the reference implementation.

b. Note that the color of C is Red on entry to this function.
c. We will identify if the function is correct

4. fn remove_by_index(index)
a. Correctly updates root_index and max_index
b. If index has both children, it is swapped with the correct node lower in the tree
c. Correctly handles easy cases of deletion
d. Calls remove_fix on index only under the conditions that are required by the reference

implementation
5. fn remove_fix(child_index, parent_index)

67

https://en.wikipedia.org/wiki/Left-leaning_red%E2%80%93black_tree
https://docta.ucm.es/rest/api/core/bitstreams/5923b28d-ebd7-42ef-915e-01bedf8633c8/content

a. This function is similar to insert_fix. If the node to be fixed is black, there are four main
cases, depending on: 1) the color of the sibling 2) the color of the children of the sibling.
These cases are: 1) the sibling is red 2) the sibling is black and both children are black 3) the
sibling is black, the left child is red, and the right child is black 4) the sibling is black, the left
child is black, and the right child is red. Each case has a specular case depending on
whether the node the function is fixing is a left child or right child.

When verifying each function, we will include the code of all functions it calls, unless the callee is to be
verified separately. For example, verification of insert_fix will include the code of rotate_left, but
verification of insert uses the verified summary of insert_fix.

We identified insert_fix, remove_fix, swap_nodes and core steps in remove_by_index as most complex.
The code is difficult to understand. Has many branches. These functions are known to be the hardest part
of a Red-Black-Tree implementation. Therefore, we started our verification effort on these functions. Any
other function that might not be formally verified has been manually compared to the reference
implementation.

68

